Quasi-Regular Dirichlet Forms: Examples and Counterexamples
نویسندگان
چکیده
منابع مشابه
Quasi-regular Dirichlet forms: Examples and counterexamples
We prove some new results on quasi-regular Dirichlet forms. These include results on perturbations of Dirichlet forms, change of speed measure, and tightness. The tightness implies the existence of an associated right continuous strong Markov process. We also discuss applications to a number of examples including cases with possibly degenerate (sub)-elliptic part, diffusions on loops spaces, an...
متن کاملQuasi-Regular Dirichlet Forms and Applications
Since the celebrated result of Fukushima on the connection between regular Dirichlet forms and Hunt processes in 1971, the theory of Dirichlet forms has been rapidly developed and has brought a wide range of applications in various related areas of mathematics and physics (see e.g. the three new books [BH 91], [MR 92], [FOT 94] and references therein). In this survey paper I shall mainly discus...
متن کاملQuasi-regular topologies for L-resolvents and semi-Dirichlet forms
We prove that for any semi-Dirichlet form (ε, D(ε)) on a measurable Lusin space E there exists a Lusin topology with the given σ-algebra as the Borel σ-algebra so that (ε, D(ε)) becomes quasi–regular. However one has to enlarge E by a zero set. More generally a corresponding result for arbitrary L-resolvents is proven.
متن کاملDirichlet forms: Some infinite dimensional examples
The theory of Dirichlet forms deserves to be better known. It is an area of Markov process theory that uses the energy of functionals to study a Markov process from a quantitative point of view. For instance, the recent notes of Saloff-Coste [S-C] use Dirichlet forms to analyze Markov chains with finite state space, by making energy comparisons. In this way, information about a simple chain is ...
متن کاملNonlinear Games: examples and counterexamples
In this session, popular nonlinear control methodologies are compared using benchmark examples generated with a "converse Hamilton-Jacobi-Bellman" method (CoHJB). Starting with the cost and optimal value function V, CoHJB solves HJB PDEs "backwards" algebraically to produce nonlinear dynamics and optimal controllers and disturbances. Although useless for design, it is great for generating bench...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Canadian Journal of Mathematics
سال: 1995
ISSN: 0008-414X,1496-4279
DOI: 10.4153/cjm-1995-009-3